

	Year 1			
Year 1	Concrete	Pictorial	Abstract	
Counting and adding more	Children add one more person or object to a group to find one more.	Children add one more cube or counter to a group to represent one more.	Use a number line to understand how to link counting on with finding one more. one more 0 1 2 3 4 5 6 7 8 9 10 One more than 6 is 7. 7 is one more than 6. Learn to link counting on with adding more than one. 0 1 2 3 4 5 6 7 8 9 10 5+3=8	
Understanding part-part- whole relationship	Sort people and objects into parts and understand the relationship with the whole.	Children draw to represent the parts and understand the relationship with the whole.	Use a part-whole model to represent the numbers. 10 6 4 6 + 4 = 10	
53	The parts are 2 and 4. The whole is 6.		6 + 4 = 10	

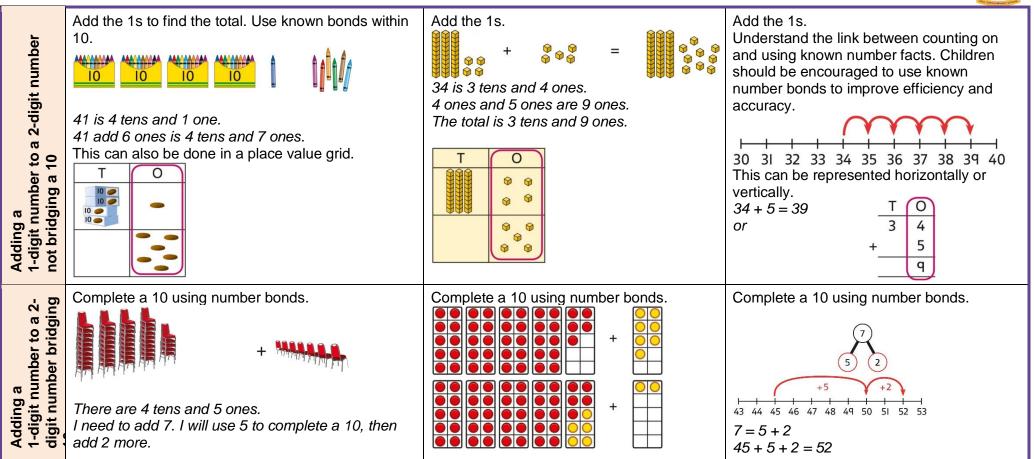
and finding number thin 10	Break apart a group and put back together to find and form number bonds. 3 + 4 = 7	Use five and ten frames to represent key number bonds. 5 = 4 + 1	Use a part-whole model alongside other representations to find number bonds. Make sure to include examples where one of the parts is zero. a) 4 0
Knowing and fin bonds within 10	6 = 2 + 4	10 = 7 + 3	b) $(3 + 0) = 4$ (3 + 1) = 4
Understanding teen numbers as a complete 10 and	Complete a group of 10 objects and count more.	Use a ten frame to support understanding of a complete 10 for teen numbers.	1 ten and 3 ones equal 13. 10 + 3 = 13
Adding by counting on	Children use knowledge of counting to 20 to find a total by counting on using people or objects.	Children use counters to support and represent their counting on strategy.	Children use number lines or number tracks to support their counting on strategy. 7 7 + 5 =

Adding the 1s	Children use bead strings to recognise how to add the 1s to find the total efficiently. 2 + 3 = 5 12 + 3 = 15	Children represent calculations using ten frames to add a teen and 1s. 2+3=5 12+3=15	Children recognise that a teen is made from a 10 and some 1s and use their knowledge of addition within 10 to work efficiently. 3 + 5 = 8 So, $13 + 5 = 18$
Bridging the 10 using number bonds	Children use a bead string to complete a 10 and understand how this relates to the addition. 7 add 3 makes 10. So, 7 add 5 is 10 and 2 more.	Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10.	Use a part-whole model and a number line to support the calculation. 4 1 3 9 10 11 12 13 9 + 4 = 13
Counting back and taking away	Children arrange objects and remove to find how many are left.	Children draw and cross out or use counters to represent objects from a problem. ••••••••••••••••••••••••••••••••••••	Children count back to take away and use a number line or number track to support the method. 876 $9-3=6$

			and another second
Finding a missing part, given a whole and a part	Children separate a whole into parts and understand how one part can be found by subtraction.	Children represent a whole and a part and understand how to find the missing part by subtraction. 5 - 4 = 5	Children use a part-whole model to support the subtraction to find a missing part. 7 7 3 7 - 3 = ? Children develop an understanding of the relationship between addition and subtraction facts in a part-whole model. - = - = + =
Finding the difference	Arrange two groups so that the difference between the groups can be worked out.	Represent objects using sketches or counters to support finding the difference. 5 - 4 = 1 The difference between 5 and 4 is 1.	Children understand 'find the difference' as subtraction. 0 1 2 3 4 5 6 7 8 9 10 10 - 4 = 6 The difference between 10 and 6 is 4.

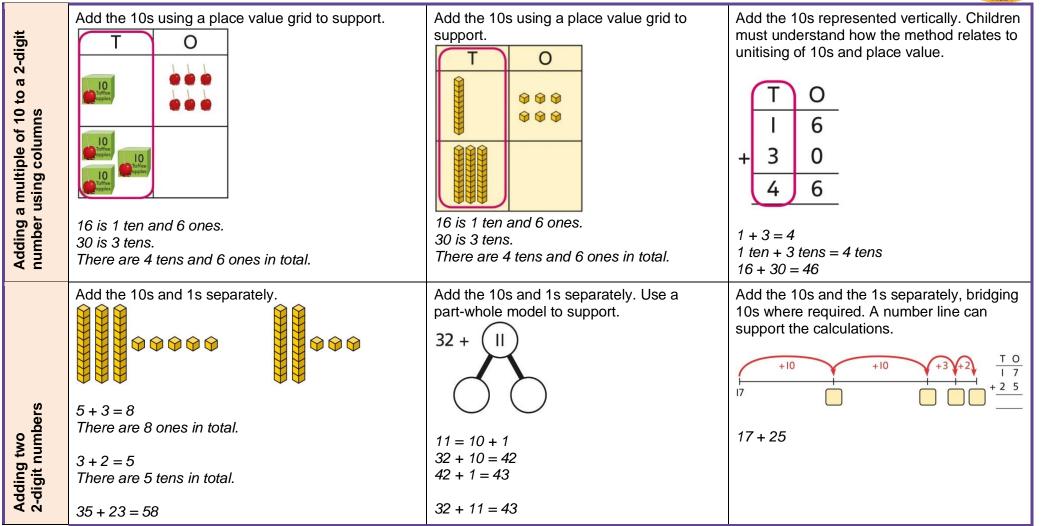
Subtraction within 20	Understand when and how to subtract 1s efficiently. Use a bead string to subtract 1s efficiently. 5-3=2 15-3=12	Understand when and how to subtract 1s efficiently. $\bigcirc \bigcirc $	Understand how to use knowledge of bonds within 10 to subtract efficiently. 5 - 3 = 2 15 - 3 = 12
Subtracting 10s and 1s	For example: 18 – 12 Subtract 12 by first subtracting the 10, then the remaining 2. First subtract the 10, then take away 2.	For example: 18 – 12 Use ten frames to represent the efficient method of subtracting 12.	Use a part-whole model to support the calculation. 14 10 14 19 - 14 19 - 10 = 9 9 - 4 = 5 So, $19 - 14 = 5$
Subtraction bridging 10 using number bonds	For example: 12 – 7 Arrange objects into a 10 and some 1s, then decide on how to split the 7 into parts.	Represent the use of bonds using ten frames. For 13 – 5, I take away 3 to make 10, then take away 2 to make 8.	Use a number line and a part-whole model to support the method. 13-5 5 5 6 7 8 9 10 11 12 13

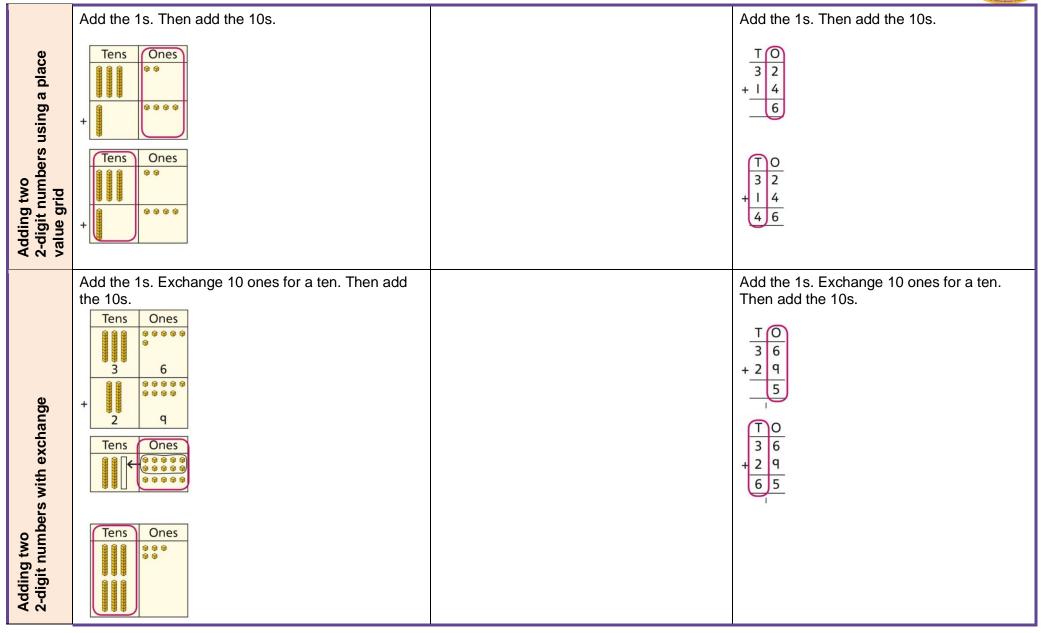
-			The Parcenton Party
Recognising and making equal groups	Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal.	Children draw and represent equal and unequal groups.	Three equal groups of 4. Four equal groups of 3.
Find the total of equal groups counting in 2s, 5s	There are 5 pens in each pack 510152025303540	100 squares and ten frames support counting in 2s, 5s and 10s. 1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 2 2 2 2 3 2 4 25 26 27 28 29 30 3 3 2 3 3 4 35 36 37 38 39 40 4 4 2 4 3 44 45 46 47 48 49 55	Use a number line to support repeated addition through counting in 2s, 5s and 10s. 10 10 10 10 10 10 10 10
Grouping	Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups.	Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups.	Children may relate this to counting back in steps of 2, 5 or 10.



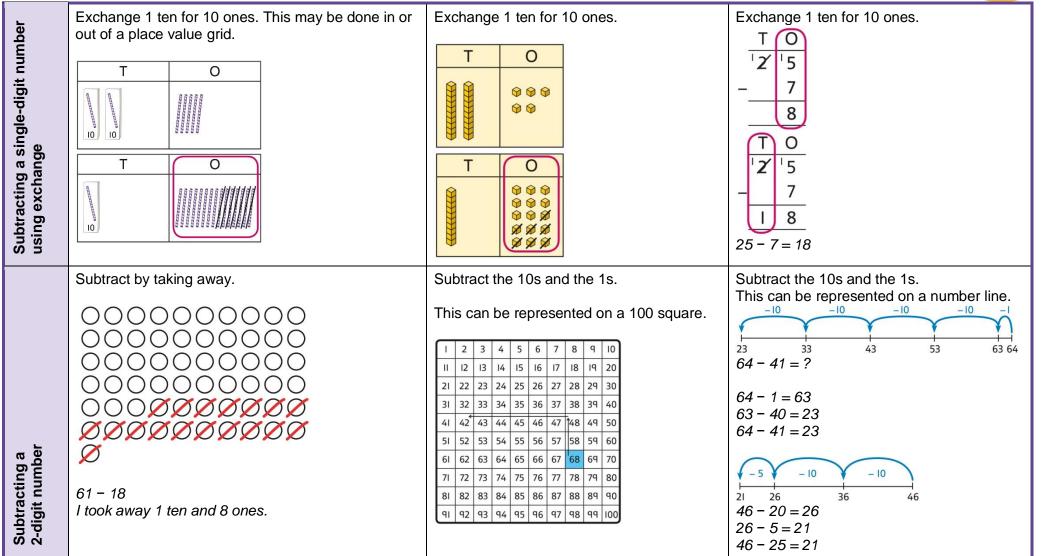
	Share a set of objects into equal parts and work out how many are in each part.	Sketch or draw to represent sharing into equal parts. This may be related to fractions.	10 shared into 2 equal groups gives 5 in each group.
Sharing			

	Year 2			
Year 2	Concrete	Pictorial	Abstract	
Understanding 10s and 1s	Group objects into 10s and 1s.	Understand 10s and 1s equipment, and link with visual representations on ten frames.	Represent numbers on a place value grid, using equipment or numerals. Tens Ones 3 2 Tens Ones 4 3	
Adding 10s	Use known bonds and unitising to add 10s. Use known bonds and unitising to add 10s. 1 know that 4 + 3 = 7. So, 1 know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s.	Use known bonds and unitising to add 10s. 7 4 4 3 4 + 3 = 1 4 + 3 = 7 4 tens + 3 tens = 7 tens 40 + 30 = 70	

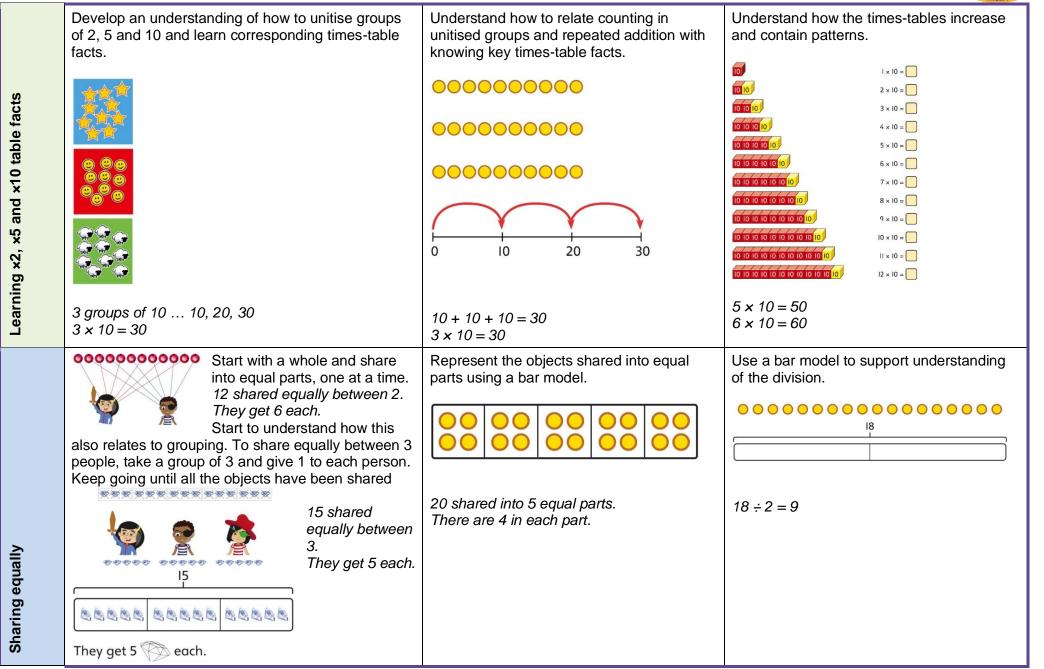




	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.
to a 2-digit exchange			$\begin{array}{c} T \\ \hline 2 \\ + \\ \hline 2 \\ \hline 1 \\ \hline \end{array}$
Adding a 1-digit number t number using e			T O 2 4 8 3 3 2
	Add the 10s and then recombine.	Add the 10s and then recombine.	Add the 10s and then recombine.
of 10 to a 2-			37 + 20 = ? 30 + 20 = 50 50 + 7 = 57
multiple ber	27 is 2 tens and 7 ones. 50 is 5 tens.	66 is 6 tens and 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0nes 21 22 23 24 25 26 27 28 29 30	37 + 20 = 57
Adding a mult digit number	There are 7 tens in total and 7 ones. So, 27 + 50 is 7 tens and 7 ones.	Ones. 21 22 23 24 25 26 27 28 24 30 $66 + 10 = 76$ 31 32 33 34 35 36 37 38 34 40 A 100 square can support this understanding. 17 72 73 74 75 76 77 78 74 80 81 82 83 84 85 86 87 88 89 90	



			The degrammer sectors
ples	Use known number bonds and unitising to subtract multiples of 10.	Use known number bonds and unitising to subtract multiples of 10.	Use known number bonds and unitising to subtract multiples of 10.
Subtracting multiples of 10	VIIII VIIII	100 30	7 70 2 5 20 50
Subtr of 10	8 subtract 6 is 2. So, 8 tens subtract 6 tens is 2 tens.	10 - 3 = 7 So, 10 tens subtract 3 tens is 7 tens.	7 tens subtract 5 tens is 2 tens. 70 - 50 = 20
ji t	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. Understand the link between counting back and subtracting the 1s using known bonds.
ı single-digit			30 31 32 33 34 35 36 37 38 39 40
Subtracting a number		T O	$ \begin{array}{cccc} T & O \\ \overline{3} & q \\ - & 3 \\ \overline{3} & 6 \\ \overline{39} - 3 = 6 \\ \overline{39} - 3 = 36 \end{array} $
<u>-</u>	Bridge 10 by using known bonds.	Bridge 10 by using known bonds.	Bridge 10 by using known bonds.
Subtracting a single- digit number bridging 10			-4 -4 16 17 18 19 20 21 22 23 24 25 26
Subti digit bridg	35 − 6 I took away 5 counters, then 1 more.	35 – 6 First, I will subtract 5, then 1.	24 - 6 = ? 24 - 4 - 2 = ?



Subtracting a 2-digit number using place value and columns	Subtract the 1s. Then subtract the 10s. This may be done in or out of a place value grid. TO 000000 000000 000000 000000 000000 0000000 00000000	Subtract the 1s. Then subtract the 10s.	Using column subtraction, subtract the 1s. Then subtract the 10s. $T \bigcirc 4$ 4 5 -1 2 3 $T \bigcirc 4$ 5 -1 2 3 3 3 3 3 3 3 3
Subtracting a 2-digit number with exchange		Exchange 1 ten for 10 ones. Then subtract the 1s. Then subtract the 10s.	Using column subtraction, exchange 1 ten for 10 ones. Then subtract the 1s. Then subtract the 10s. $\frac{T}{4} \frac{O}{5}$ $-\frac{2}{2} \frac{7}{7}$ $\frac{T}{-2} \frac{O}{3 \frac{4}{5}} \frac{15}{5}$ $-\frac{2}{2} \frac{7}{-2} \frac{7}{-2}$ $\frac{T}{-2} \frac{O}{3 \frac{4}{5}} \frac{15}{5}$ $-\frac{2}{2} \frac{7}{-2} \frac{7}{-2}$ $\frac{8}{-2} \frac{7}{-2} \frac{7}{-2} \frac{8}{-2}$

and tion	Recognise equal groups and write as repeated addition and as multiplication.	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication.	Use a number line and write as repeated addition and as multiplication.
Equal groups and repeated addition	नियम नियम नियम		
Equ	<i>3 groups of 5 chairs 15 chairs altogether</i>	3 groups of 5 15 in total	5 + 5 + 5 = 15 $3 \times 5 = 15$
lication	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.
arrays to ent multipl upport			
Using arrays to represent multiplication and support	4 groups of 5	4 groups of 5 5 groups of 5	0 5 10 15 20 25 5 × 5 = 25
	Use arrays to visualise commutativity.	Form arrays using counters to visualise commutativity. Rotate the array to show that	Use arrays to visualise commutativity.
Understanding commutativity		orientation does not change the multiplication.	
Understandinç commutativity	I can see 6 groups of 3. I can see 3 groups of 6.	This is 2 groups of 6 and also 6 groups of 2.	4 + 4 + 4 + 4 + 4 = 20 5 + 5 + 5 + 5 = 20 $4 \times 5 = 20 \text{ and } 5 \times 4 = 20$

	Understand how to make equal groups from a whole.	Understand the relationship between grouping and the division statements.	Understand how to relate division by grouping to repeated subtraction.
	<u></u>	$12 \div 3 = 4$	
equally	8 divided into 4 equal groups. There are 2 in each group.	$12 \div 4 = 3$	0 1 2 3 4 5 6 7 8 9 10 11 12
		12 ÷ 6 = 2	There are 4 groups now.
			12 divided into groups of 3.
Grouping		$12 \div 2 = 6$	$12 \div 3 = 4$ There are 4 groups.
–			
a	Understand the relationship between multiplication facts and division.	Link equal grouping with repeated subtraction and known times-table facts to	Relate times-table knowledge directly to division.
bles to solve		support division.	$I \times I0 = I0$ $2 \times I0 = 20$ $3 \times I0 = 30$ $4 \times I0 = 40$ $5 \times I0 = 50$ I used the I0 times-table to help me.
les-ta		40 divided by 4 is 10.	$6 \times 10 = 60$ $7 \times 10 = 70$ $3 \times 10 = 30.$
known times-tables ons	4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5.	Use a bar model to support understanding of the link between times-table knowledge and division.	$8 \times 10 = 80$ I know that 3 groups of 10 makes 30, so I know that 30 divided by 10 is 3.
Using kno divisions			$3 \times 10 = 30$ so $30 \div 10 = 3$